Tartalom
A bináris kódolt decimális (BCD) decimális jelölést a számítógépes programozáshoz használják, mivel képes megőrizni a memória tárolási kapacitását. A tizedes adatok egy részének bináris kódba írása kétféle módon történhet: úgy, hogy a számot egészében binárisra konvertáljuk, vagy a decimális számot bináris számjegyre konvertáljuk. A szám megengedett méretének nincs felső határa, ha a BCD kódot használjuk, de amikor a teljes tizedes számot binárisra konvertáljuk, a legnagyobb használható számot a számítógép processzorának és az adatbusznak a kapacitása határozza meg. A számítógépes programozásban használt általános számalapok a 2, 8, 10 és 16. Mindegyik alap leírja az értékek kifejezésére használt számokat, és meghatározza azok kezelésének módját.
1. lépés
Írja be annak a számnak a BCD kódját, amelyből konvertálni kívánja az alapját. A BCD kód egy 4 bites bináris számok sorozata, amelyek megfelelnek a numerikus rendszer minden egyes számjegyének. Például, ha a "138" számot fogja használni az alap 10-es, vagy a tizedes rendszerben, akkor a BCD kód 12 bit lesz. Minden 4 bit egyetlen számjegyet képvisel a tizedes számban. Az első "1" számjegy 0001 lesz a BCD kódban. A következő két számjegy ugyanúgy van összeállítva, vagyis a "3" 0011, a "8" pedig 1000 lesz. A "138" BCD kód tizedes ábrázolása "000100111000" vagy egyszerűsítve "100111000" lesz.
2. lépés
Válassza ki, melyik bázisra kívánja konvertálni a BCD számot. A számítógépes programozásban a leggyakoribb a bináris (2. alap), az oktális (8. alap) és a hexadecimális (16. alap).
3. lépés
Alakítsa át a BCD kódszámot tizedes formátumra. Nincs közvetlen módja annak, hogy a BCD kódot más alapra konvertáljuk. Ahhoz, hogy a számot egy választott bázisra írja, először át kell alakítania tizedesre, majd a kiválasztott bázisra. Például dekódolja a következő BCD számot eredeti bázisára (10. alap): "1001011100101001". Ehhez szükséges lesz a biteket 4 bites halmazokba csoportosítani, majd mindegyik halmazt tizedesjegyre konvertálni. A négy csoport: "1001", "0111", "0010" és "1001", amelyek átszámítva 9729-et eredményeznek.
4. lépés
Osszuk el a tizedes számot azon alapértékkel, amelyre át akarjuk alakítani. A divízió többi része az eredmény kevésbé fontos helyzetébe kerül. Ossza el ismét az eredmény teljes részét az alapértékkel. A teljes részt előre kell tolni, és az osztály többi része elfoglalja a következő legkevésbé fontos helyet az eredményben. Ez addig folytatódik, amíg a teljes adag kevesebb lesz, mint az alapérték. Például konvertáljuk a 312-t decimálissá a 4. alapra. A következő számítási sorozat a kívánt alapon adja meg a választ.
312/4 = 78; Pihenés = 0,78/4 = 19; Pihenés = 2 19/4 = 4; Pihenés = 3 4/4 = 1; Pihenés = 0
Most csatlakozik a felosztásban talált utolsó egész számhoz, ebben az esetben az "1" számhoz, majd a fennmaradó maradványokhoz, az utolsótól az elsőig feljegyezve, befejezve az átalakítást és elérve a 4. alap "10320" eredményét.